Computer Vision/OpenCV
2장. OpenCV으로 데이터 작업
2장 에서는 몇가지 기본적인 OpenCV 기능을 살펴본다. 목차. 머신러닝 워크플로의 이해 OpenCV와 파이썬을 사용한 데이터 취급 파이썬 NumPy 패키지를 사용한 데이터 취급 NumPy 가져오기 NumPy 배열의 이해 인덱싱을 통해 단일 배열 요소에 액세스 다차원 배열 만들기 파이썬에서 외부 데이터 세트 불러오기 Matplotlib을 사용한 데이터 시각화 외부 데이터 세트의 데이터 시각화 C++에서 OpenCV의 TrainData 컨테이너를 사용해 데이터 다루기 요약 앞서 머신러닝은 인공지능의 하위 분야로 설명했음. 이러한 명제는 사실이지만, 대부분의 경우 머신러닝은 단순히 데이터를 이해하는 과정에 불과함. 그러므로 머신러닝을 데이터 과학의 하위 분야로 생각하는 것이 더 적합. 여기서는 데이터를 이..
1장. 머신러닝 시작
1장 에서는 이 책에 필요한 소프트웨어와 파이썬 모듈을 설치하는 방법을 설명한다. 목차기술적 요구사항머신러닝 시작머신러닝으로 해결할 수 있는 문제지도 학습 (supervised learning)비지도 학습 (unsupervised learning)강화 학습 (reinforcement learning)파이썬 시작OpenCV 시작설치이 책의 최신 코드 얻기파이썬의 아나콘다 배포판conda 환경에서 OpenCV 설치설치 확인OpenCV의 ML 모듈 엿보기머신러닝의 응용OpenCV 4.0의 새로운 기능요약 컴퓨터 비전은 자율주행 자동차와 구글의 딥마인드(DeepMind)같은 혁신적인 시스템을 주도하는 딥러닝 및 컨볼루션 신경망(CNN, Convoultional Neural Networks)과 함께 머신러닝의 가..
OpenCV 4를 활용한 머신러닝 입문 MACHINE LEARNING for OPENCV 4 / Computer Vision 책추천
OpenCV 4를 활용한 머신러닝 입문 ( MACHINE LEARNING for OPENCV 4 ) Computer Vision Capstone Design Project를 진행하기에 앞서서 구체적으로 이론공부를 하기위해서 저희 학교 도서관에서 빌렸습니다. 책 내용정리 + Focusing 해야하는 부분 을 정리해놓을테니 독자분들도 참고하시어같이 발전해나갔으면 좋겠습니다. 차근차근 3부까지 다루겠습니다. 거두절미하고 시작하겠습니다🙌. 아래는, 전체적인 목차와 링크를 달아놓았습니다. -1부 머신러닝과 OpenCV의 기본원리- 필수 라이브러리 설치를 시작으로 머신러닝과 OpenCV의 기본, 지도학습의 기본, 그 응용을 다루고, 마지막으로 OpenCV를 이용한 특징 검출과 인식 방법을 살펴본다. 1장 머신러닝 ..